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Delay estimation from noisy time series
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We propose here a method to estimate a delay from a time series taking advantage of analysis of random
walks with delay. This method is applicable to a time series coming out of a system which is or can be
approximated as a linear feedback system with delay and noise. We successfully test the method with a time
series generated by a discrete Langevin equation with delay.@S1063-651X~97!50903-2#

PACS number~s!: 02.50.2r, 05.90.1m, 87.10.1e
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Estimation of delay from a noisy time series has attrac
much attention. Especially when the time series is chao
estimation of delay has a practical motivation: time-delay
coordinates are typically used to estimate fractal dimens
and Lyapunov exponents. There are series of works con
ering the subject from this viewpoint@1–4#. Another view-
point is to consider that a noisy time series consists of
derlying deterministic dynamics with past influence and
noise term. Some statisticians have taken this stand and
vised methods of analysis, for example, using the gene
ized Langevin equation@5,6# and fluctuation dissipation
theorem@7#. In physiological fields, a more specialized ca
of the feedback delay associated with the control system
attracted a great deal of interest. A series of attempts
been made to estimate the delay from physiological exp
mental data~see, e.g.,@8–10#!.

Against this background, we present here a method
estimating delay from a time series which is or is appro
551063-651X/97/55~3!/2077~4!/$10.00
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mately generated by a noisy linear feedback system. We
advantage of the analysis of random walks whose transi
probability depends on the walker’s position in a fixed inte
val past. Such random walks are termed delayed rand
walks and were proposed recently as a platform on which
study systems with both noise and delay@9,11#. We will
describe each step of the method in a transparent manne
implementation into computer algorithms. The method
tested to show its effectiveness on several test time se
generated by the discrete Langevin equation with delay@12#.

Let us first describe the delayed random walk, on who
analysis we base our method for delay estimation. We c
sider a random walk which takes a unit step in a unit tim
The delayed random walk we start with is an extension o
position dependent random walk whose step toward the
gin is more likely when no delay exists. Formally, it has t
following definition:
P~Xt115n;Xt112t5s!5g~n21,s21!P~Xt5n21;Xt112t5s;Xt2t5s21!

1g~n21,s11!P~Xt5n21;Xt112t5s;Xt2t5s11!

1 f ~n11,s21!P~Xt5n11;Xt112t5s;Xt2t5s21!

1 f ~n11,s11!P~Xt5n11;Xt112t5s;Xt2t5s11!, ~1!
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f ~x,y!5 1
2 ~11ax1by!

g~x,y!5 1
2 ~12ax2by!, ~2!
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where the position of the walker at timet is Xt , and
P(Xt1

5u1 ;Xt2
5u2) is the joint probability for the walker to

be atu1 andu2 at time t1 and t2, respectively.f (x,y) and
g(x,y) are transition probabilities to take a step to the ne
tive and positive directions, respectively. Hence, the tran
tion probability depends on both the current and thet steps
past positions of the walker. We note that the above defi
tion is approximate: we are assuming that the probability
the walker to be at positions which violate the conditi
0< f (x,y)<1 is negligible. This is an extension of the d
layed random walk model discussed in@11#.

Following a similar argument as@11#, we can derive a se
of coupled equations which the stationary correlation fu
tion of the model obeys

K~0!5~122a!K~0!1122bK~t!

K~u!5~12a!K~u21!2bK„t2~u21!…, ~1<u<t!

K~u!5~12a!K~u21!2bK„~u21!2t…, ~u.t!.
~3!

We can solve this set of equations iteratively forK(u) given
a, b andt; examples are shown in Fig. 1. We note that t
oscillatory solutions are seen with sufficiently larget, but
the shapes of the curves are different for the cases ofa.b
andb.a @13#.

The delayed random walk model presented here
be considered a model of a linear delayed feedback sys

FIG. 1. Stationary correlation functionK(u) as a function of
stepsu iteratively obtained as the solution of Eq.~3!. The param-
eters are set as (a,b,t)5(a)(0.1,0.15,10) and (b)(0.2,0.1,20).
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with noise in probability space. This can be seen more tra
parently by considering its counterpart in physical spa
which is given as follows in discrete time with white nois
j t @12#:

Xt112Xt52aXt2bXt2t1j t , ^j t1j t2&5d~ t12t2!. ~4!

If the system which generates a time series is or is appr
mated as a noisy linear feedback system, we can use
above set of equations to estimate the delay and other pa
eters. The basic idea is to ‘‘tune’’ each parameter so that
correlation function from the time series numerica
matches the solution of Eq.~3!. We can derive several con
crete algorithms of different approaches based on this b
idea. In the following we present one such method which
simple with respect to both its concept and its implemen
tion. The concrete steps are as follows.

~1! As a prerequisite, we need to have a stationary no
time series and some physical assumption that it is o
approximately generated by a linear feedback system w
delay. ~Some aspects of a time series such as whether
chaotic or not can be checked by already known meth
@2#.!

~2! Construct the autocorrelation functionC(u) from the
time series. If it is oscillating with someC(u),0, we can go
to the next step.„If not oscillating andC(u).0, it is still
possible to ‘‘tune’’ parameters in principle. However,
other methods may be more appropriate@7#, we do not con-
sider this case here.… An example is shown in Fig. 2.

FIG. 2. An example of time series~a! and associated correlatio
functionC(u) generated from Eq.~4b!. The parameters are set a
(a,b,t)5(0.2,0.1,20).
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FIG. 3. Examples of plots ofL1 ~a,b,c! and L2 ~d,e,f!, with various estimation ofte for the time series shown in Fig. 2 with
(a,b,t)5(0.2,0.1,20). The estimates arete5(a)(d)15,(b)(e)20,(c)(f)25.
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~3! From $C(u)%, we generate a ‘‘normalized set.’’ De
cide on the unit step size, and normalize the correlation fu
tion by the following requirement derived from Eq.~3!:

K~0!2K~1!5 1
2 . ~5!

Hence, we generate

K~u!5
C~u!

2@C~0!2C~1!#
. ~6!

We assume that with correctly estimated parameters,K(u)
generated this way obeys Eq.~3!.

FIG. 4. An example of plots ofE(te) with various estimates
around t i514 for the time series shown in Fig. 2 wit
(a,b,t)5(0.2,0.1,20).~b! is with finer scale around the minimum
of E.
c-
~4! Estimate delayte around the ‘‘first zero’’t i of the

correlation function;t i is the smallest number such th
K(t i)'0.

~5! With estimatedte , generate the following two sets o
ordered pairL15$@y1(u),z1(u)#% andL25$@y2(u),z2(u)#%
from K(u):

y1~u!5
K~u!

K~ ute2uu!
, z1~u!5

K~u11!

K~ ute2uu!
~7!

y2~u!5
K~ ute2uu!

K~u!
, z2~u!5

K~u11!

K~u!
~8!

~6! Plot L1 andL2. We use the following relation derived
from Eq. ~3!:

z1~u!5~12a!y1~u!2b, z2~u!52by2~u!2~12a!
~9!

Thus our assumption here is that if we have a correct e
mate oft then both plots will be fitted with a linear functio
whose slope and intercept will give usa andb. An example
of these plots are shown in Fig. 3.

~7! Compute~unnormalized! x2 error for each plot, and
define

E~te!5x1
21x2

2 . ~10!

Our best estimate oft is the one which minimizesE(te)
neart i . Correspondinga andb is obtained as described i
Eq. ~6! ~Fig. 4!.

We have tried this algorithm on several test time ser
data generated by Eq.~4! with various parameter ranges, an
sample results are shown in Table I. We found that
choice of the number of correlation function points use
umax, occasionally affect our results. We heuristically cho
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umax at a value up to which the graph ofC(u) is rather clear,
typically about two to four timest i . The estimates are quit
reasonable as shown here and typically better than ‘‘fi
zero’’ estimatet i .

We have described a method of estimating parame

TABLE I. Table of estimation results. For a time series w
parameters of (a,b,t), our method generatesa i ,b i , andte , where
a i ,b i are estimated from graph ofLi ,i51,2.

a b t t i te a1 a2 b1 b2 umax

0.04 0.02 20 32 18 0.030 0.024 0.021 0.021 8
0.05 0.02 50 41 50 0.051 0.051 0.020 0.022 8
0.08 0.04 10 16 11 0.091 0.090 0.038 0.037 3
0.10 0.15 5 6 5 0.10 0.10 0.15 0.15 20
0.10 0.30 5 5 5 0.099 0.10 0.30 0.30 50
0.20 0.10 20 14 20 0.21 0.20 0.10 0.098 50
0.30 0.10 10 8 10 0.31 0.30 0.11 0.098 25
i,

ys
t

rs

from a time series produced by a noisy linear feedback s
tem with a single stable point using analysis of delayed r
dom walks. As mentioned, other algorithms based on
same basic idea of ‘‘tuning’’ in to the correlation functio
can be devised. A scheme of cross checking estimated
rameters from these different algorithms is currently be
investigated@13#. In several fields, models have been co
structed which include the effects of time delays@8,14–16#.
The method presented here could possibly help in the crit
examination of these models with extension of includi
noise effects by comparisons with experimental time ser
especially near the equilibrium state of the system. We
currently involved in the application of this and similar a
gorithms to experimental time series from biological sy
tems, such as posture control data@17#, which can physically
be assumed to have a delayed feedback.

The authors would like to thank Professor M. Tokoro
Keio University and Sony CSL for providing an opportuni
for this collaborative work.
ira
@1# F. Takens, Lect. Notes Math.898,366 ~1981!.
@2# P. Grassberger and I. Procaccia, Physica D9, 189 ~1983!; A.

Wolf, J. B. Swift, H. L. Swinney, and J. Vastano,ibid. 16,285
~1985!.

@3# M. J. Bünner, M. Popp, Th. Meyer, A. Kittel, and J. Paris
Phys. Rev. E54,R3082~1996!.

@4# M. Sano and Y. Sawada, Phys. Rev. Lett.55, 1082 ~1985!; J.
-P. Eckmann and D. Ruelle, Rev. Mod. Phys.57, 617 ~1985!;
T. Tanaka, K. Aihara, and M. Taki, Phys. Rev. E54, 2122
~1996!.

@5# R. Kubo, in1965 Tokyo Summer Lectures in Theoretical Ph
ics, Part I,Many-Body Theory~Benjamin, New York, 1966!,
pp.1–16; Rep. Prog. Phys.29, 255 ~1966!.

@6# H. Mori, Prog. Theor. Phys.33, 423 ~1965!.
@7# See, e.g., Y. Okabe, Am. Math. Soc. Transl.161, 19 ~1994!.
@8# J. Milton and A. Longtin, Vis. Res.30, 515 ~1990!.
@9# T. Ohira and J. G. Milton, Phys. Rev. E52, 3277 ~1995!.
-

@10# C. Eurich and J. G. Milton, Phys. Rev. E54, 6681 ~1996!.
@11# T. Ohira, Phys. Rev. E55,R1255~1997!.
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