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We propose here a method to estimate a delay from a time series taking advantage of analysis of random
walks with delay. This method is applicable to a time series coming out of a system which is or can be
approximated as a linear feedback system with delay and noise. We successfully test the method with a time
series generated by a discrete Langevin equation with dggdy263-651X97)50903-2

PACS numbegps): 02.50~r, 05.90+m, 87.10+e

Estimation of delay from a noisy time series has attractednately generated by a noisy linear feedback system. We take
much attention. Especially when the time series is chaoticadvantage of the analysis of random walks whose transition
estimation of delay has a practical motivation: time-delayedyrobability depends on the walker’s position in a fixed inter-
coordinates are typically used to estimate fractal dimensiongal past. Such random walks are termed delayed random
and Lyapunov exponents. There are series of works considyalks and were proposed recently as a platform on which to
ering the subject from this viewpoiil—4]. Another view-  study systems with both noise and del;11]. We will
point is to consider that a noisy time series consists of Ungescribe each step of the method in a transparent manner for
derlying deterministic dynamics with past influence and gmplementation into computer algorithms. The method is
noise term. Some statisticians have taken this stand and desgieq to show its effectiveness on several test time series
vised methods of analysis, for example, using the generabenerated by the discrete Langevin equation with dElay.

ized Langevin equ_atior{5,6] i and fluctuation djs;ipation Let us first describe the delayed random walk, on whose
theorem[7]. In physiological _f|elds, a more specialized Caseanalysis we base our method for delay estimation. We con-
of the feedback delay associated with the control system hasslder a random walk which takes a unit step in a unit time
attracted a great deal of interest. A series of attempts hth delaved rand Ik tart with i P tensi f '
been made to estimate the delay from physiological experi- € delayed rahdom wal we start With 1S an extension of a
mental datasee, e.g.[8—10). p_os!tlon dep_endent random walk Whose step towa_lrd the ori-
Against this background, we present here a method o@in iS more likely when no delay exists. Formally, it has the

estimating delay from a time series which is or is approxi-following definition:

|
P(Xt+1=NMX11-,~5)=9(N—1s-1)P(X;=n—1;X1 1, =5 X, =s—1)

+g(n—1s+1)P(X;=n—1;X;11_,=S;X;_,=5+1)
+f(n+1s5—1)P(X;=n+1;X;11_,=S;X;{_,=5—1)
+f(n+1s+1)P(X;=n+1;X;11_,=S;X;_,=s+1), (1)
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f(x,y)=3(1+ ax+ By)

g(x,y)=3(1—ax—pgy), @

where the position of the walker at timeis X;, and with noise in probability space. This can be seen more trans-

P(Xi,=us; X, =Uy) is the joint probability for the walker to parently by considering its counterpart in physical space,

be atu; andu, at timet, andt,, respectivelyf(x,y) and which is given as follows in discrete time with white noise

g(x,y) are transition probabilities to take a step to the negaft [12]:

tive and positive directions, respectively. Hence, the transi;, _ _ _

tion probability depends on both the current and theteps Xepi=Xe=— X BXeH & (6 éy)=oti—t).  (4)

past positions of the walker. We note that the above deﬁni—]c h hich . L . .

tion is approximate: we are assuming that the probability for! ¢ edsystem whic I_gener?tezba tIITe SErIes IS or IS approxrll-

the walker to be at positions which violate the condition mated as a noisy linear feedback system, we can use the

0=<f(x,y)=<1 is negligible. This is an extension of the de- above set of equations to estimate the delay and other param-

layed r,andom walk model discussed[ ] eters. The basic idea is to “tune” each parameter so that the
Following a similar argument d4.1] We' can derive a set correlation function from the time series numerically

of coupled equations which the stationary correlation func-matChes the solution of E¢3). We can derive several con-

tion of the model obeys crete algorithms of different approaches based on this basic
idea. In the following we present one such method which is
K(0)=(1—-2a)K(0)+1—28K(7) simple with respect to both its concept and its implementa-
tion. The concrete steps are as follows.
K(u)=(1-a)K(u—1)—BK(r—(u—1)), (1<us<r) (1) As a prerequisite, we need to have a stationary noisy
time series and some physical assumption that it is or is
K(w=(1-a)K(u—1)—-BK(u—1)—17), (u>7). approximately generated by a linear feedback system with

©) delay. (Some aspects of a time series such as whether it is
chaotic or not can be checked by already known methods
We can solve this set of equations iteratively ko) given  [2].)
a, B and ; examples are shown in Fig. 1. We note that the (2) Construct the autocorrelation functi@(u) from the
oscillatory solutions are seen with sufficiently largebut  time series. If it is oscillating with som@&(u) <0, we can go
the shapes of the curves are different for the cases>B  to the next step(If not oscillating andC(u)>0, it is still
and 8>« [13]. possible to “tune” parameters in principle. However, as
The delayed random walk model presented here caother methods may be more approprigfé we do not con-
be considered a model of a linear delayed feedback systesider this case hepeAn example is shown in Fig. 2.
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FIG. 1. Stationary correlation functio(u) as a function of FIG. 2. An example of time seri€g) and associated correlation

stepsu iteratively obtained as the solution of E@). The param-  function C(u) generated from Eq4b). The parameters are set as
eters are set as¥(3,7)=(a)(0.1,0.15,10) and (b)(0.2,0.1,20). (a,B,7)=(0.2,0.1,20).
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FIG. 3. Examples of plots of; (a,b,0 and L, (d,e,f, with various estimation ofr, for the time series shown in Fig. 2 with
(a,B,7)=(0.2,0.1,20). The estimates arg=(a)(d)15,(b)(e)20,(c)(f)25.

(3) From{C(u)}, we generate a “normalized set.” De-

(4) Estimate delayr, around the “first zero” r; of the

cide on the unit step size, and normalize the correlation funceorrelation function;r; is the smallest number such that

tion by the following requirement derived from E):

K(0)—K(1)=3.

Hence, we generate

C(u)

KW=3rco-cT

©)

(6)

We assume that with correctly estimated paramete(s)
generated this way obeys E@).
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FIG. 4. An example of plots oE(7.) with various estimates
around 7,=14 for the time series shown in Fig. 2 with
(a,B,7)=(0.2,0.1,20) (b) is with finer scale around the minimum

of E.

K(7)=~0.
(5) With estimatedr,, generate the following two sets of

ordered paitl; ={[y;(u),zy(u) ]} andL,={[y2(u),zx(u)]}
from K(u):

K  K(u+1)
yl(U)—m, z,(u = K(l7au]) (7)
K(|re—ul) K(u+1)
Y2(U)=%, Zy(u ::<(—u) 8

(6) PlotL, andL,. We use the following relation derived
from Eq. (3):

z1(W)=(1—a)y1(\)—B, Zy(u)=—pBy(u)—(1-a)

(©)

Thus our assumption here is that if we have a correct esti-
mate ofr then both plots will be fitted with a linear function
whose slope and intercept will give usand 8. An example
of these plots are shown in Fig. 3.

(7) Compute(unnormalized x? error for each plot, and
define

E(7e)=Xi* X3 (10
Our best estimate of is the one which minimize&(7,)
nearr;. Correspondingr and 3 is obtained as described in
Eq. (6) (Fig. 4).

We have tried this algorithm on several test time series
data generated by E¢4) with various parameter ranges, and
sample results are shown in Table I. We found that the
choice of the number of correlation function points used,
Umax, Occasionally affect our results. We heuristically chose
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TABLE I. Table of estimation results. For a time series with from a time series produced by a noisy linear feedback sys-
parameters of¢, 8, 7), our method generatesg ,3;, andr., where  tem with a single stable point using analysis of delayed ran-
a;,B; are estimated from graph &f ,i=1,2. dom walks. As mentioned, other algorithms based on the
same basic idea of “tuning” in to the correlation function
can be devised. A scheme of cross checking estimated pa-
0.04 002 20 32 18 0.030 0.024 0.021 0.021 80 rameters from these different algorithms is currently being
0.05 0.02 50 41 50 0.051 0.051 0.020 0.022 80 investigated13]. In several fields, models have been con-
0.08 0.04 10 16 11 0.091 0.090 0.038 0.037 30 structed which include the effects of time deld$s14—16.
010 0B 5 6 5 010 0.10 0.15 0.15 20 The method presented here could possibly help in the critical
010 0% 5 5 5 0.099 010 030 0.30 50 examination of these models with extension of including
020 010 20 14 20 021 020 0.10 0.098 50 hoise effects by comparisons with experimental time series,
030 010 10 8 10 031 030 0.11 0.098 25 especially near the equilibrium state of the system. We are
currently involved in the application of this and similar al-
gorithms to experimental time series from biological sys-
tems, such as posture control dgt&], which can physically
be assumed to have a delayed feedback.

a B T T Te ag a3 B1 Ba Umax

Umax @t @ value up to which the graph Gf(u) is rather clear,

typically about two to four times;. The estimates are quite

reasonable as shown here and typically better than “first The authors would like to thank Professor M. Tokoro of

zero” estimater; . Keio University and Sony CSL for providing an opportunity
We have described a method of estimating parameterfr this collaborative work.
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